Exercise 4

A bacteria culture grows with constant relative growth rate. The bacteria count was 400 after 2 hours and 25,600 after 6 hours.
(a) What is the relative growth rate? Express your answer as a percentage.
(b) What was the intitial size of the culture?
(c) Find an expression for the number of bacteria after t hours.
(d) Find the number of cells after 4.5 hours.
(e) Find the rate of growth after 4.5 hours.
(f) When will the population reach 50,000 ?
[TYPO: This should be spelled as "initial."]

Solution

Part (a)

Assume that the relative growth rate is constant.

$$
\frac{1}{P} \frac{d P}{d t}=k
$$

Rewrite the left side using the chain rule.

$$
\frac{d}{d t} \ln P=k
$$

The function that you take a derivative of to get k is $k t+C$, where C is any constant.

$$
\ln P=k t+C
$$

Exponentiate both sides to get P.

$$
\begin{aligned}
P(t) & =e^{k t+C} \\
& =e^{C} e^{k t}
\end{aligned}
$$

Use a new constant P_{0} for e^{C}.

$$
\begin{equation*}
P(t)=P_{0} e^{k t} \tag{1}
\end{equation*}
$$

The bacteria count was 400 after 2 hours and 25,600 after 6 hours. Use this information to construct a system of equations for the two unknowns, P_{0} and k.

$$
\left\{\begin{array}{l}
P(2)=P_{0} e^{2 k}=400 \\
P(6)=P_{0} e^{6 k}=25600
\end{array}\right.
$$

In order to eliminate P_{0}, divide both sides of the second equation by those of the first equation.

$$
\begin{gathered}
\frac{P_{0} e^{6 k}}{P_{0} e^{2 k}}=\frac{25600}{400} \\
e^{4 k}=64 \\
\ln e^{4 k}=\ln 64 \\
4 k=\ln 64 \\
k=\frac{\ln 64}{4} \approx 1.03972 \text { hour }^{-1}
\end{gathered}
$$

Therefore, the relative growth rate is about 104% per hour; that is, the population increases by a factor of about 2.04 every hour.

Part (b)

Substitute this value of k into either of the two equations to get P_{0}.

$$
\begin{gathered}
P_{0} e^{2 k}=400 \\
P_{0} e^{2\left(\frac{\ln 64}{4}\right)}=400 \\
P_{0} e^{\frac{1}{2} \ln 64}=400 \\
P_{0} e^{\ln 64^{1 / 2}}=400 \\
P_{0} \sqrt{64}=400 \\
P_{0}(8)=400 \\
P_{0}=50
\end{gathered}
$$

The initial population of bacteria was 50 .

Part (c)

Plugging the values for k and P_{0} into equation (1), the bacteria population at t hours is therefore

$$
\begin{aligned}
P(t) & =50 e^{\left(\frac{\ln 64}{4}\right) t} \\
& =50 e^{\ln 64^{t / 4}} \\
& =50(64)^{t / 4} .
\end{aligned}
$$

Part (d)

After 4.5 hours, the population is

$$
P(4.5)=50(64)^{4.5 / 4} \approx 5382 .
$$

Part (e)
After 4.5 hours the rate of population growth is

$$
\left.\frac{d P}{d t}\right|_{t=4.5}=k P(4.5)=\left(\frac{\ln 64}{4}\right)\left[50(64)^{4.5 / 4}\right] \approx 5595.5 \frac{\mathrm{cells}}{\text { hour }} .
$$

Part (f)
To find when the population will reach 50,000 , set $P(t)=50,000$ and solve the equation for t.

$$
\begin{gathered}
P(t)=50000 \\
50(64)^{t / 4}=50000 \\
64^{t / 4}=1000 \\
\ln 64^{t / 4}=\ln 1000 \\
\frac{t}{4}(\ln 64)=\ln 1000 \\
t=\frac{4 \ln 1000}{\ln 64} \approx 6.64386 \text { hours }
\end{gathered}
$$

